Bernstein Coefficients

Yves Bertot

May 2015
Basic idea

- Proving positivity of a polynomial in a bounded interval
- Two points of view
 - Variable changes to change the nature of intervals
 - Basis change in the polynomial vector space
- Obtain a sufficient positivity condition on the coefficients
- A natural approach for eliminating a variable
- Condition is not necessary
 - Incompleteness is solvable thanks to dichotomy
Variable changes

- Positivity of P on interval (a, b) equivalent to positivity of $P \circ (X \ast (b - a) + a)$ on interval $(0, 1)$
- Positivity of P on interval $(a, +\infty)$ equivalent to positivity of $P \circ (X + a)$ on $(0, +\infty)$
- Positivity of P on $(0, 1)$ equivalent to positivity of $X^n \times P(1/X)$ on $(1, +\infty)$
 - Last operation actually stays in the same polynomial space (if $\text{deg}(P) = n$)
 - Alternative point of view: *reversing the list coefficient*
 - A linear operation
Linear transforms

- for any \(Q, P \mapsto P \circ Q \) is linear
- call \(\theta_a : P \mapsto P \circ (X + a) \)
- call \(\chi_a : P \mapsto P \circ (aX) \)
- call \(\rho_n : \sum_{i=0}^{n} c_i X^i \mapsto \sum_{i=0}^{n} c_{n-i} X^i \)
- positivity of \(P \) on interval \((a, b)\) equivalent to positivity of \(\theta_a \circ \chi_{b-a}(P) \) on \((0, 1)\)
- positivity of \(P \) on interval \((0, 1)\) equivalent to positivity of \(\theta_1 \circ \rho_n(P) \) on \((0, +\infty)\)
Basis change

- The operation $\mu_{n,a,b} = \theta_1 \circ \rho_n \circ \theta_a \circ \chi_{b-a}$ is linear, invertible.
 - On vector space of polynomials of degree $\leq n$
- Coefficients of $\mu_{n,a,b}(P)$ in monomial basis $(1, X, \ldots, X^n)$ are coefficients of P in basis $\mu_{n,a,b}^{-1}(1, X, \ldots, X^n)$

$$\mu_{n,a,b}(P) = \sum_{i=0}^{n} b_i X^i \iff P = \sum_{i=0}^{n} b_i \mu_{n,a,b}^{-1}(X^i)$$

- $\forall i, 0 < b_i \Rightarrow \forall x, a < x < b \Rightarrow 0 < P(x)$
- $\mu_{n,a,b}^{-1}(X^k) = \frac{(X-a)^{n-k}(b-X)^k}{(b-a)^n}$
- The polynomials $\mu_{n,a,b}^{-1}(X^k)$ are obviously positive on (a, b)
Proof procedure

- Use $\mu_{n,a,b}$ to compute coefficients b_i
- Verify the equality

$$P = \sum_{i=0}^{n} b_i \frac{(X - a)^{n-k}(b - X)^k}{(b - a)^n}$$

- get rid of null coefficients, and verify positivity of the rest
Bernstein Polynomials

\[B_{n,i,a,b} = \binom{n}{i} \frac{(X - a)^i (b - X)^{n-i}}{(b - a)^n} \]

- Proportional to \(\mu_{n,a,b}^{-1}(X^i) \)
- Coefficients in Bernstein basis have same sign
- Coefficients in Bernstein basis have a geometric interpretation
Bernstein Polynomial of degree 5
Bernstein Control Points

\[P = \sum_{i=0}^{n} b_i B_{n,i,a,b} \]

- consider the points \((a + i\frac{(b-a)}{n}, b_i)\)
- The broken line that links them approximates the curve
- The convex hull of these points contains the curve
Dichotomy

- If all coefficients are positive, this is sufficient
- If one of the coefficients is negative, no conclusion
- Solution: compute Bernstein coefficients for a smaller interval
Dichotomy

http://fooplot.com/plot/qilqpfewvwd
Implementation

- Leveraging existing tactics
- Datatypes for fractional expressions FExpr and polynomial expressions PExpr
 - Constructors for addition, multiplication, variables, opposite, constants (integers)
- A datatype for normalized polynomial expressions, Po1
 - Like list of coefficients but more efficient (cater sparsity)
- Normalization from one type to a different type
 - Easy to collect “coefficients”
 - Problem when normalization is a middle step
Basic operations

- Composition with a polynomial expression: substitution
 - Replace a variable by a FExpr in a FExpr
 - Replace a variable by a PExpr in a PExpr

- Reversing a polynomial: directly on normalized polynomials

- Added a function from Pol to PExpr
Use in a multi-variate context

- The tactic takes as an input a multi-variate positivity goal and a *principal* variable
- Produces a collection of multi-variate positivity goals
 - The principal variable has disappeared from goals
- Companion tactics make it possible to perform dichotomy
Demo time
Dichotomy can be performed directly on coefficients
 ▶ Casteljau’s algorithm, similar to Pascal triangle
 ▶ Proof of correctness already performed (in Coq): Bertot, Guilhot & Mahboubi 2010

Complexity needs to be tamed

No reflective implementation yet

Certificate approach is relevant: explain the tree of dichotomies
 ▶ Wish to re-use existing work: Solovyev (Flyspeck), Zumkeller
Computing dichotomies

<table>
<thead>
<tr>
<th></th>
<th>0.5</th>
<th>0.7</th>
<th>0.6</th>
<th>−0.1</th>
<th>0.2</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6</td>
<td>0.65</td>
<td>0.25</td>
<td>0.05</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.625</td>
<td>0.45</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5375</td>
<td>0.3</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.41675</td>
<td>0.225</td>
<td>0.32075</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Here, half-sums
- Also possible to use pondered averages \((\alpha x + (1 - \alpha)y)\)
 - \(\alpha\) may be outside \((0, 1)\)