Distant decimals of π

Yves Bertot, Laurence Rideau, Laurent Théry

June 2018

- ► Arithmetic-geometric means: an algorithm with 3n divisions
- Arithmetic-geometric means: an algorithm with only one division
- ▶ A few facts about the correctness of individual digits
- The BBP formula

The Arithmetic-Geometric computation

- A pair of two sequences of real numbers
- $ightharpoonup a_0 = 1$ $b_0 = x$ $a_{n+1} = \frac{a_n + b_n}{2}$ $b_{n+1} = \sqrt{a_n b_n}$

- $ightharpoonup a_n$ and b_n converge very fast to the same value $(a_n$ is larger)
- $\rightarrow a_n b_n < A^{-2^n}$
- Number of known digits doubles at every step

AGM for π

- ▶ Define f(x) as the arithmetic-geometric mean of 1 and x
- Key property $\pi = 2\sqrt{2} \frac{f(1/\sqrt{2})^3}{f'(1/\sqrt{2})}$
- ▶ Mathematical proofs based on elliptic integrals
 - Improper integrals (Coquelicot)
 - Needed extensions (Chasles with improper integrals)
 - Lots of formulas with squares and square roots slightly beyond Presburger automated proofs

Borwein & Borwein algorithm

▶ Define
$$y_n(x) = \frac{a_n(x)}{b_n(x)}$$
 $z_n(x) = \frac{b'_n(x)}{a'_n(x)}$

► Easy consequence
$$1 + y_n = 2 \frac{a_{n+1} b_{n+1}^2}{a_n b_n^2}$$
 $1 + z_n = 2 \frac{a'_{n+1}}{a'_n}$

$$y_0(x) = \frac{1}{x}$$
 $y_{n+1} = \frac{1+y_n}{2\sqrt{y_n}}$ $z_1 = \frac{1}{\sqrt{x}}$ $z_{n+1} = \frac{1+z_ny_n}{(1+z_n)\sqrt{y_n}}$

$$\pi_n = (2 + \sqrt{2}) \prod_{i=1}^n \frac{1 + y_i}{1 + z_i} \text{ at } x = \frac{1}{\sqrt{2}}$$

convergence rate

$$0 \le \pi_{n+1} - \pi \le 8\sqrt{2} \times 531^{-2^n}$$

Brent and Salamin algorithm

▶ Define
$$c_n = \frac{1}{2}(a_{n-1} - b_{n-1})$$

$$\pi'_n = \frac{4a_n^2}{1 - \sum_{k=1}^{n-1} 2^{k-1} (a_{k-1} - b_{k-1})^2}$$

convergence rate

- First approximation $|\pi'_{n+1} \pi| \le 68 \times 531^{-2^{n-1}}$
- ► Coarser than Borwein&Borwein: $\pi_{n+1} \pi \le 8\sqrt{2} \times 531^{-2^n}$
- ▶ Improvement by studying $|\pi'_{n+2} \pi'_{n+1}|$

$$|\pi'_{n+1} - \pi| \le (132 + 384 \times 2^n) \times 531^{-2^n}$$

- lacktriangle For computing 10^6 decimals of π both π'_{19} and π_{19} are enough
 - ▶ $132 + 384 \times 2^{19} \le 2^{28}$
- ▶ Each algorithm computes n square roots, but π_n computes 3n divisions, π'_n only half-sums and one full division.

Rounding errors

- Approximating real computations using fixed-point computations (rounding towards 0)
- ▶ Take the same program code, replace operations
- How do rounding errors propagate?
- ► Amazingly $|y_n y_n| \le 2ulp$ and $|z_n z_n| \le 4ulp$
- $| \overline{\pi_n} \pi_n | \leq (21 * n + 2) ulp$
- $| \pi'_n \pi'_n | \le (160(\frac{3}{2})^{n+1} + 80 * 3^{n+1} + 100) ulp$

Total interval for Brent-Salamin

- ▶ In the end $10^{10^6+k} imes \pi_{19}'$ is within 2^{40} of $10^{10^6+k} imes \pi$
- ▶ It remains to choose a suitable value of *k*
- ▶ It is more efficient to compute $2^{\lfloor log_2(10)\rfloor \times 10^6} imes \pi_{19}'$
- ▶ Paper available at https://hal.inria.fr/hal-01582524
- Code and instructions https: //www-sop.inria.fr/marelle/distant-decimals-pi/
- Includes a C implementation of the Borwein algorithm, on top of MPFR.

The BBP formula

Work done in Coq by Laurence Rideau and Laurent Théry

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^{i}} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right).$$

- Mathematical justification using Rieman integrals
- commuting integration and infinite sum: thanks to Coquelicot

Computation of a single (hexa-decimal) digit

- lacktriangle Computing the $d^{ ext{th}}$ hexadecimal digit of π
- $\triangleright \lfloor 16^{d-1}\pi \rfloor (mod 16)$
- Choose a precision p
- Compute separately each of the sums, taking the modulo right-away
- $\blacktriangleright \text{ Example: } \sum_{i=0}^{\infty} \lfloor \frac{2^{p} 16^{d-1-i} \times 4}{8i+1} \rfloor (mod 2^{p})$

Intuitive example

► Transposing in base 10, what is the second digit (on the right of the dot) of

$$\sum_{i=0}^{\infty} \frac{1}{10^i} \frac{1}{2i+1}$$

 $ightharpoonup 1 + 0.03333... + 0.00200... + 0.00014... + 0.00001... + \cdots$

Computation of a single digit (continued)

- ▶ Only a finite number of terms in the sum, approximately d + p/4 terms
 - ▶ No modulo is needed for the last p/4 terms
- Use integer division: uncertainty bounded by 1
- Accumulated uncertainty is d + p/4 + 1
- ▶ We need the accumulated uncertainty to be small wrt. 2^{p-4}
- ► Final result is partial: when the value modulo 2^p is closer to 2^p than the accumulated uncertainty the digit is not known.