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Vocabulary

Definition (algebraic)
A number is algebraic if it is the root of a non-zero polynomial whose
coefficients lie in Q.

Definition (transcendental)

A number is transcendental if it is not algebraic.

Examples :
o —5is a root of X% — 25.
o i is aroot of X2 +1.
o ¥2is a root of X3 —2.
X2 25

o —5is also a root of 2X3 — 3 50X + 3



Introduction
[e]e] e}

History

1844

— Liouville — 1st transcendental number

1873

Hermite — Transcendence of e
1882

Lindemann — Transcendence of m

1882,1885

Weierstrass —

Algebraic independence of
exponentials
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Motivations

[e]

To study the frontier between algebraic and transcendental numbers

To connect different libraries

[e]

o To extend a library for multivariate polynomials (P-Y Strub)

o To formally prove the last big result on number theory of the 19th century
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Motivations

o To study the frontier between algebraic and transcendental numbers

o To connect different libraries

o To extend a library for multivariate polynomials (P-Y Strub)

o To formally prove the last big result on number theory of the 19th century
o Analysis for functions R — C.

o Fundamental theorem of symmetric polynomials

o Minimal polynomial

o Conjugates of a polynomial
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Transcendence of e and 7

Definition (algebraic)

A number is algebraic if it is the root of a non-zero polynomial whose
coefficients lie in Q.

Algebraic

Definition algebraicOver (fFtoE : F —E) u :=
exists p, p != 0 & root (map_poly fFtoE p) u.

Statements

Theorem e_transcendental : ~(algebraicOver ratr (exp 1)%:C).
Theorem pi_transcendental : ~(algebraicOver ratr PI%:C).
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Lindemann-Weierstrass theorem

Theorem (Lindemann-Weierstrass)

For any non-zero natural number n and any algebraic numbers ai, . .., a,, if the
set {a1,...,an} is linearly independant over Q, then {e™,... e™} is
algebraically independant over Q.

Coq statement

Theorem Lindemann (n : nat) (a : complexR ~ n)
(@ > 0)UN —
(forall i : ’I_n, a i is_algebraic) —
(forall (lambda : complexR ~ n),
(forall i : ’I_n, lambda i \is a Cint) —
(exists i : ’I_n, lambda i != 0) —

\sum_(i < n) (lambda i * a i) != 0) —
forall p, p \is a mpolyOver _ Cint —
p!=0—

p.@[finfun (Cexp \o a)l !'= 0.
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Baker's reformulation

Theorem (Baker's reformulation)

For any non-zero natural number |, any distinct algebraic numbers s, . .., ay
and any non-zero algebraic numbers (31, ..., [3;, we have :

,Ble"“ 4+ ...+ ﬁ,e”" 7é 0.
Coq statement

Theorem LindemannBaker :
forall (1 : nat) (alpha : complexR ~ 1.+1) (a : complexR ~ 1.+1),
injective alpha —
(forall i : ’I_1.+1, alpha i is_algebraic) —
(forall i : ’I_1.+41, a i !'= 0) —
(forall i : ’I_1.+1, a i is_algebraic) —
(Cexp_span a alpha != 0).



Context

’ Mathematical Components }4—{ Multivariate Polynomials‘

L-W Theorem
Coquelicot

Structures
Figure — Link between the different libraries
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Transcendence of e
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Figure — Proof structure of the transcendence of ¢
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Lindemann-Weierstrass Theorem

Lemma 2 («)

Theorem (Baker

)

- ﬂ Theorem (Lindemann) ‘
Figure — Implications between the different theorems and lemmas
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Lemmas for Baker's reformulation

Theorem (Baker's reformulation)

For any non-zero natural number I, any distinct algebraic numbers aa, . . ., «;
and any non-zero algebraic numbers (31, ..., i, we have :

61601 + ...+ ﬁleal # 0.

Lemma (1)
For any non-zero natural number I, any distinct algebraic numbers au, . . ., «;
and any non-zero integers (31, ..., 31, we have :

,Blea‘ + ...+ ﬁ,eo" 75 0.
Lemma (2)
For any non-zero natural number I, any distinct algebraic numbers aa, . . ., «;
and any non-zero integers (31, ..., i, such that the a's can be grouped into a

partition A, if for each part in A, the a's form a complete set of conjugates,
and on each part in A, the 8's are constant, we have :

B1e“t + ...+ Bie™ #0.
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o Functions from R to C

o Goals : integral of a derivative, upper bound on integrals

Definition RInt (f

/1 ae” “Plax)dx = Z PD0) — e~ Z P)(a)

R —R) (ab :R)

o Extensions of continuity, derivative and integral
o Not on the Coquelicot complex numbers !
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Useful lemmas

Theorem

Let f be a function from R to C, let a and b be real numbers such that f is
differentiable at any point between a and b, and its derivative is continuous at
any point between a and b, then

/b f/(t)dt = F(b) — f(a)

Lemma RInt_Crderive f a b:
(forall x, Rmin a b <= x <= Rmax a b — ex_derive f x) —
(forall x, Rmin a b <= x <= Rmax a b —
Crcontinuity_pt (Crderive f) x) —
CrInt (Crderive f) ab=f b - f a.
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Useful lemmas

Theorem

Let f be a function from R to C, let a and b be real numbers such that a < b,
and f is continuous at any point between a and b, then

/ab f(t)dt‘ < /ab IF(5)|dt

Lemma CrInt_norm f a b :
a<=b —
(forall x, Rmin a b <= x <= Rmax a b — Crcontinuity_pt f x) —
norm (CrInt f a b) <= RInt (fun t => norm (f t)) a b.
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Minimal polynomial

Definition (Minimal polynomial)

The minimal polynomial of a non-zero algebraic number x is the non-zero
monic polynomial P over Q of least degree such that P(x) = 0.

But...
o Why ? Uniqueness, Conjugate elements, Many properties, . ..

o How ? Existence in algC (minCpoly), in finite extensions of fields
(minPoly), in a field with a decidable embedding in a closed field
(minPoly_decidable_closure).

o So? Use the existing constructions.
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Existence proof of a minimal polynomial

algebraic
: complexR

Candidates
. rat poly

closed field

:algC

min. poly.

to int

int poly
Figure — Existence

of a minimal polynomial
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Multivariate Polynomials

Definition (Vocabulary)
n-variate polynomial on a ring R
o Indeterminates (ex. Xi,..., X, or X, Y, Z)
o Monomials : product of indeterminates (ex. X{ X3X7)
o Multinomials : linear combination of monomials with coefficients in a ring
R (ex. V2iX2Xs + §X§X3)

How to?
o lterated polynomials
o Free abelian group

o Monomials algebra
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Symmetric polynomials

Definition (Symmetric polynomials)

A n-variate polynomial P is symmetric if
Vo € G,, P[Xa(l), . ,Xg(,,)] =P

Examples with 3 variables
o X3Y2Z 4+ XY3Z7% + X2YZ? is not symmetric
o X3Y2Z + XY3Z%2 + X?YZ3 + X3YZ% + XY?Z3 + X2Y3Z is symmetric

Basis of symmetric polynomials

o Elementary symmetric polynomials s, x : n-variate polynomial, sum of all
distinct products of k distinct variables.
ex. s32 =XY +XZ+YZ

o Monomial symmetric polynomials m, (u is a monomial) : polynomial with
the same number of variables as u, sum of all distinct monomials obtained

when we permute the variables of wu.
ex. 3 variables : myzy = X2Y + X2Z + Y?X + Y2Z + Z2X + Z?Y.
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Fundamental theorems of symmetric polynomials

Fundamental theorem of symmetric polynomials, v1
Let P be a symmetric n-variate polynomial, with coefficients in a ring R.

There exists a n-variate polynomial @ whose coefficients are in R such that :

P = Q[Sn,1, aaa ,S,,,n]

Fundamental theorem of symmetric polynomials, v2
Let P be a symmetric n-variate polynomial, with coefficients in a ring R.
There exists a finite sequence (\;) of elements of R, and a finite sequence of
monomials (u;) such that :
P=> " Ximy
i

Consequence : the evaluation of a symmetric polynomial on the set of roots of
an univariate polynomial is in the ring A if both polynomials have all their
coefficients in A.
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Subset of variables

All the definitions and lemmas can be extended to allow only a subset A of
variables to be considered.

o Symmetric on a subset A : permutations of A.

o Monomial symmetric polynomials on a subset A.

o Evaluation of a multinomial on a subset A.

o Fundamental theorem of symmetric polynomials, v37?

o Consequence of the evaluation ?
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Conjugates

Definition (Conjugates)

The conjugates of an algebraic number x are the roots of its minimal
polynomial.

By extension :

o The conjugates of a non-zero polynomial in Q[X] are the conjugates of
one of its roots.

o A set of complex numbers {x1,...,xn} is a complete set of conjugates if
they are the conjugates of []7_, (X — x;).

o Two algebraic numbers x and y are conjugates if they have the same
minimal polynomial.

Example :
o X2 — 2 has two roots : v/2 and —v/2.
o v/2 and —/2 are the conjugates of v/2, but also of X2 — 2.
o {ﬁ, ,\/j} is a complete set of conjugates
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Fundamental theorem of symmetric polynomials, v3
o n a non-zero natural number
A a partition of {X1,...,Xs}

o P a n-variate polynomial, with coefficients in Q, symmetric on each part
of A

o ai,...,q, distinct complex numbers

[e]

for each part of A, the a's are a complete set of conjugates (ex. if
{X1,Xa} € A, {oa, a2} should be a complete set of conjugates)

[e]

Then Plaa,...,as] is a rational number.
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Lemma 1 = Theorem (Baker)
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Contributions

o

Symmetrized of a monomial, Monomial symmetric polynomials

[¢]

Symmetry on a subset, ...

Partial evaluation of multinomials

[e]

[e]

Fundamental theorem of symmetric polynomials

[e]

Conjugates of a polynomial

o

Analysis for functions from R to C

o

Structures for archimedean field (Cint, Cnat)
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Future Work

o Use the new multinomials

o Develop more lemmas on the conjugates

o Better real/complex numbers

o Better link between coquelicot/mathcomp

o Morphism between algebraic numbers of complexR and algC

o Padé approximants?
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