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Vocabulary

Definition (algebraic)

A number is algebraic if it is the root of a non-zero polynomial whose
coefficients lie in Q.

Definition (transcendental)

A number is transcendental if it is not algebraic.

Examples :

◦ −5 is a root of X 2 − 25.

◦ i is a root of X 2 + 1.

◦ 3√2 is a root of X 3 − 2.

◦ −5 is also a root of 2X 3 − X 2

3
− 50X +

25
3
.
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History

Liouville

Hermite

Lindemann

Weierstrass

1844 1st transcendental number

1873 Transcendence of e

1882 Transcendence of π

1882,1885 Algebraic independence of
exponentials
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Motivations

◦ To study the frontier between algebraic and transcendental numbers

◦ To connect different libraries

◦ To extend a library for multivariate polynomials (P-Y Strub)

◦ To formally prove the last big result on number theory of the 19th century

◦ Analysis for functions R→ C.
◦ Fundamental theorem of symmetric polynomials

◦ Minimal polynomial

◦ Conjugates of a polynomial
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Transcendence of e and π

Definition (algebraic)

A number is algebraic if it is the root of a non-zero polynomial whose
coefficients lie in Q.

Algebraic

Definition algebraicOver (fFtoE : F → E) u :=
exists p, p != 0 & root (map_poly fFtoE p) u.

Statements

Theorem e_transcendental : ∼(algebraicOver ratr (exp 1)%:C).
Theorem pi_transcendental : ∼(algebraicOver ratr PI%:C).
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Lindemann-Weierstrass theorem

Theorem (Lindemann-Weierstrass)

For any non-zero natural number n and any algebraic numbers a1, . . . , an, if the
set {a1, . . . , an} is linearly independant over Q, then {ea1 , . . . , ean} is
algebraically independant over Q.

Coq statement

Theorem Lindemann (n : nat) (a : complexR ^ n) :
(n > 0)%N →
(forall i : ’I_n, a i is_algebraic) →
(forall (lambda : complexR ^ n),

(forall i : ’I_n, lambda i \is a Cint) →
(exists i : ’I_n, lambda i != 0) →
\sum_(i < n) (lambda i * a i) != 0) →

forall p, p \is a mpolyOver _ Cint →
p != 0 →
p.@[finfun (Cexp \o a)] != 0.
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Baker’s reformulation

Theorem (Baker’s reformulation)

For any non-zero natural number l , any distinct algebraic numbers α1, . . . , αl

and any non-zero algebraic numbers β1, . . . , βl , we have :

β1e
α1 + . . .+ βle

αl 6= 0.

Coq statement

Theorem LindemannBaker :
forall (l : nat) (alpha : complexR ^ l.+1) (a : complexR ^ l.+1),
injective alpha →
(forall i : ’I_l.+1, alpha i is_algebraic) →
(forall i : ’I_l.+1, a i != 0) →
(forall i : ’I_l.+1, a i is_algebraic) →
(Cexp_span a alpha != 0).
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Context

Multivariate PolynomialsMathematical Components

Coq

Coquelicot Structures

L-W Theorem

Figure – Link between the different libraries
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Transcendence of e

α

T

UB for T

p Ii J False

UB for Ii J < (p − 1)!

= ...× p! + ...× (p − 1)! (p − 1)! ≤ J

sum of the
derivatives of
polynomials

sum

Figure – Proof structure of the transcendence of e
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Lindemann-Weierstrass Theorem

Theorem (Baker)Lemma 1 (β)Lemma 2 (α)

Theorem (Lindemann)

Figure – Implications between the different theorems and lemmas
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Lemmas for Baker’s reformulation

Theorem (Baker’s reformulation)

For any non-zero natural number l , any distinct algebraic numbers α1, . . . , αl

and any non-zero algebraic numbers β1, . . . , βl , we have :

β1e
α1 + . . .+ βle

αl 6= 0.

Lemma (1)

For any non-zero natural number l , any distinct algebraic numbers α1, . . . , αl

and any non-zero integers β1, . . . , βl , we have :

β1e
α1 + . . .+ βle

αl 6= 0.

Lemma (2)

For any non-zero natural number l , any distinct algebraic numbers α1, . . . , αl

and any non-zero integers β1, . . . , βl , such that the α’s can be grouped into a
partition A, if for each part in A, the α’s form a complete set of conjugates,
and on each part in A, the β’s are constant, we have :

β1e
α1 + . . .+ βle

αl 6= 0.
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Proof of Lemma 2

α

T

β

UB for T

p Ii,j Ji K False

UB for Ii,j Ji < (p − 1)! K < (p − 1)!l

= ...× p! + ...× (p − 1)! (p − 1)!l ≤ K

sum of the
derivatives of
polynomials

sum product

Figure – Proof of Lemma 2
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Transcendence of e
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Analysis

◦ Functions from R to C
◦ Goals : integral of a derivative, upper bound on integrals∫ 1

0
αe−αxP(αx)dx =

∑
i

P(i)(0)− e−α
∑
i

P(i)(α)

Definition RInt (f : R → R) (a b : R)

◦ Extensions of continuity, derivative and integral

◦ Not on the Coquelicot complex numbers !
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Useful lemmas

Theorem
Let f be a function from R to C, let a and b be real numbers such that f is
differentiable at any point between a and b, and its derivative is continuous at
any point between a and b, then∫ b

a

f ′(t)dt = f (b)− f (a)

Lemma RInt_Crderive f a b:
(forall x, Rmin a b <= x <= Rmax a b → ex_derive f x) →
(forall x, Rmin a b <= x <= Rmax a b →

Crcontinuity_pt (Crderive f) x) →
CrInt (Crderive f) a b = f b - f a.
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Useful lemmas

Theorem
Let f be a function from R to C, let a and b be real numbers such that a ≤ b,
and f is continuous at any point between a and b, then∣∣∣∣∫ b

a

f (t)dt
∣∣∣∣ ≤ ∫ b

a

|f (t)|dt

Lemma CrInt_norm f a b :
a <= b →
(forall x, Rmin a b <= x <= Rmax a b → Crcontinuity_pt f x) →
norm (CrInt f a b) <= RInt (fun t => norm (f t)) a b.
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Minimal polynomial

Definition (Minimal polynomial)

The minimal polynomial of a non-zero algebraic number x is the non-zero
monic polynomial P over Q of least degree such that P(x) = 0.

But...
◦ Why ? Uniqueness, Conjugate elements, Many properties, . . .

◦ How ? Existence in algC (minCpoly), in finite extensions of fields
(minPoly), in a field with a decidable embedding in a closed field
(minPoly_decidable_closure).

◦ So ? Use the existing constructions.
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Existence proof of a minimal polynomial

x

p

xC

q q or p/q

minPolyZ

algebraic

closed field min. poly.

x root ?

Candidates

to int

complexR

rat poly

algC int poly

Figure – Existence of a minimal polynomial
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Multivariate Polynomials

Definition (Vocabulary)

n-variate polynomial on a ring R

◦ Indeterminates (ex. X1, . . . ,Xn or X ,Y ,Z)

◦ Monomials : product of indeterminates (ex. X 3
1X3X

2
4 )

◦ Multinomials : linear combination of monomials with coefficients in a ring

R (ex.
√
2iX 2

1X6 +
2
3
X 4

2X3)

How to ?
◦ Iterated polynomials

◦ Free abelian group

◦ Monomials algebra
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Symmetric polynomials

Definition (Symmetric polynomials)

A n-variate polynomial P is symmetric if

∀σ ∈ Sn,P[Xσ(1), . . . ,Xσ(n)] = P

Examples with 3 variables

◦ X 3Y 2Z + XY 3Z 2 + X 2YZ 3 is not symmetric

◦ X 3Y 2Z + XY 3Z 2 + X 2YZ 3 + X 3YZ 2 + XY 2Z 3 + X 2Y 3Z is symmetric

Basis of symmetric polynomials
◦ Elementary symmetric polynomials sn,k : n-variate polynomial, sum of all

distinct products of k distinct variables.
ex. s3,2 = XY + XZ + YZ

◦ Monomial symmetric polynomials mu (u is a monomial) : polynomial with
the same number of variables as u, sum of all distinct monomials obtained
when we permute the variables of u.
ex. 3 variables : mX2Y = X 2Y + X 2Z + Y 2X + Y 2Z + Z 2X + Z 2Y .
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Fundamental theorems of symmetric polynomials

Fundamental theorem of symmetric polynomials, v1
Let P be a symmetric n-variate polynomial, with coefficients in a ring R.
There exists a n-variate polynomial Q whose coefficients are in R such that :

P = Q[sn,1, . . . , sn,n]

Fundamental theorem of symmetric polynomials, v2
Let P be a symmetric n-variate polynomial, with coefficients in a ring R.
There exists a finite sequence (λi ) of elements of R, and a finite sequence of
monomials (ui ) such that :

P =
∑
i

λimui

Consequence : the evaluation of a symmetric polynomial on the set of roots of
an univariate polynomial is in the ring A if both polynomials have all their
coefficients in A.
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Subset of variables

All the definitions and lemmas can be extended to allow only a subset A of
variables to be considered.

◦ Symmetric on a subset A : permutations of A.

◦ Monomial symmetric polynomials on a subset A.

◦ Evaluation of a multinomial on a subset A.

◦ Fundamental theorem of symmetric polynomials, v3 ?

◦ Consequence of the evaluation ?
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Conjugates

Definition (Conjugates)

The conjugates of an algebraic number x are the roots of its minimal
polynomial.

By extension :

◦ The conjugates of a non-zero polynomial in Q[X ] are the conjugates of
one of its roots.

◦ A set of complex numbers {x1, . . . , xn} is a complete set of conjugates if
they are the conjugates of

∏n
i=1(X − xi ).

◦ Two algebraic numbers x and y are conjugates if they have the same
minimal polynomial.

Example :

◦ X 2 − 2 has two roots :
√
2 and −

√
2.

◦
√
2 and −

√
2 are the conjugates of

√
2, but also of X 2 − 2.

◦ {
√
2,−
√
2} is a complete set of conjugates
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But why ?

Fundamental theorem of symmetric polynomials, v3
◦ n a non-zero natural number

◦ Λ a partition of {X1, . . . ,Xn}
◦ P a n-variate polynomial, with coefficients in Q, symmetric on each part

of Λ

◦ α1, . . . , αn distinct complex numbers

◦ for each part of Λ, the α’s are a complete set of conjugates (ex. if
{X1,X2} ∈ Λ, {α1, α2} should be a complete set of conjugates)

Then P[α1, . . . , αn] is a rational number.
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α β

A B

poly poly of poly

polys poly

new α/β new α/β

partition

separable poly with at
least the α’s as roots

product of all the minimal
polynomial of the β’s

on injective functions An on functions Bn

decomposition on monomial
symmetric polynomials evaluation

conjugates

roots

symmetry

product of exp-linear combinations

evaluation,
eliminate the duplicates,
coefficients not null

Lemma 2 =⇒ Lemma 1 Lemma 1 =⇒ Theorem (Baker)

Figure – Comparison of the proofs of L. 2 =⇒ L. 1 and L. 1 =⇒ Th. (Baker)
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Contributions

◦ Symmetrized of a monomial, Monomial symmetric polynomials

◦ Symmetry on a subset, . . .

◦ Partial evaluation of multinomials

◦ Fundamental theorem of symmetric polynomials

◦ Conjugates of a polynomial

◦ Analysis for functions from R to C
◦ Structures for archimedean field (Cint, Cnat)
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Future Work

◦ Use the new multinomials

◦ Develop more lemmas on the conjugates

◦ Better real/complex numbers

◦ Better link between coquelicot/mathcomp

◦ Morphism between algebraic numbers of complexR and algC

◦ Padé approximants ?
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